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Abstract

The present study is a numerical simulation about the dynamics of a flexible disk coupled to thin air film and rotating

close to a rigid rotating wall. The idea of a flexible disk rotating in a close proximity of a rigid rotating wall is introduced

and studied with two new types of flat stabilizers, co-rotating and counter-rotating flat stabilizers, besides the well-known

fixed-stabilizer type which has been studied extensively in earlier works. In the present study, the flexible disk is modeled

using linear plate theory and the air flow between the flexible disk and the rigid wall is modeled using Navier–Stokes and

continuity equations. The flow equations are discretized using cell centered finite volume method (FVM) and solved

numerically with the SIMPLE algorithm, while the spatial terms in the disk model are discretized using finite difference

method (FDM) and time integration is performed using fourth-order Runge–Kutta method. The effect of inertia and

coriollis forces on the disk displacement and air-film pressure is studied, also the dependence of these forces on the rotation

speed, initial gap size and inlet-hole radius is investigated. A transient numerical code is developed to compare the stability

boundaries for the different types of flat stabilizer at a wide range of circumferential mode numbers. The numerical results

showed an improved stability of the flexible disk when rotating close to a counter-rotating flat stabilizer compared with co-

rotating and fixed flat stabilizers.

Crown Copyright r 2008 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Flexible disks are widely used as low-cost recording medium for computer memories. The recent drastic
increase in the quantity of computer data has led to a strong demand for high-speed, high-reliability devices
based on flexible disks. The strong demands for high data access rates and high reliability require small
transverse vibrations of the disk at high rotation speeds. So, it is important to investigate the optimal design
for the flexible disk system since it is a good candidate for compact as well as high-capacity data storage
means. Several studies have been carried out for the investigation of the dynamic characteristics of a flexible
disk rotating close to a rigid wall both analytically and experimentally.
ee front matter Crown Copyright r 2008 Published by Elsevier Ltd. All rights reserved.
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Nomenclature

D bending stiffness of the disk material
E Young’s modulus of the disk material
h disk thickness
ho initial gap height
J Jacobian of transformation
m circumferential mode number
p fluid pressure
po steady-state air-film pressure
pa ambient pressure
r, y, z cylindrical coordinates
r radial distance
ro flexible disk outside radius
rc flexible disk clamping radius
rh inlet-hole radius
Rer, Rey, Rez modified Reynolds numbers in

radial, azimuthal and axial directions,
respectively

t time
v flexible disk axial velocity

vr, vy, vzflow velocities along the coordinates
directions

vr
o, vy

o, vz
o reference velocities (vr

o, vy
o, vz

o
¼ oro)

w flexible disk displacement
wo steady-state disk displacement
z axial distance

Greek letters

e perturbation parameter
Z, z, x computational coordinates
m fluid viscosity
mair air viscosity
r fluid density
rair air density
rd material density of the disk
sr, sy steady-state stresses in the disk material

in radial and circumferential directions
u Poisson’s ratio
o angular velocity of the disk
r
4 biharmonic operator

A.M.M. Gad, Y.C. Rhim / Journal of Sound and Vibration 317 (2008) 473–489474
Pelech and Shapiro [1] analyzed the flow generated by the rotation of a flexible disk close to a rigid wall at
low Reynolds numbers, so they neglected all convective inertia terms because of their comparatively small
values. Bogy and Talke [2] obtained steady solutions for pressurized flexible disk packs using the same
analytical model proposed by Pelech and Shapiro [1].

Hosaka and Crandall [3] were the first to estimate the maximum stable operating speed of a flexible disk
coupled to thin air film, theoretically. In their study, they performed a single-mode analysis in order to obtain
a rough estimate for the critical speed analytically. The single-mode analysis reduced the disk-film system to
one homogenous linear algebraic equation which has a form identical to the characteristic equation that
governs wave propagation of axially moving beam subjected to axially moving damping. The onset speed of
instability predicted by the single-mode analysis was close to the speed obtained from more accurate numerical
method. They found that the instability appears when the relative velocity between the disk and the average air
flow in the fluid film is larger than the traveling wave velocity of the disk vibration.

D’Angelo and Mote [4] showed that the disk spinning at high supercritical rotation speed in a fluid becomes
unstable by traveling wave aeroelastic flutter. At speeds below the flutter speed, the disk vibrates under
unsteady pressure from the flow around the disk while at flutter and at higher speeds, the fluid and disk
motions become coupled. Also, they showed that a wall positioned parallel to the disk and separated from the
disk by 0.5 cm does not change the flutter speed, frequency or mode, but it increases the post-flutter frequency.

Yasuda et al. [5] performed a theoretical as well as an experimental study for the self-excited vibrations of a
flexible disk rotating in air. First, they analyzed the free vibrations of the disk without the effect of air and then
the vibrations of the disk in air were analyzed. The forces produced by air were considered to consist of two
terms; one being an ordinary viscous damping and the other is lifting force. Their results showed that the
vibrations of the disk in air propagate as forward and backward traveling waves. While, the forward traveling
wave always decays, they showed that the backward traveling wave can become of a self-excited nature at
rotational speeds higher than certain value.

Huang and Mote [6] presented an analytical investigation of instability mechanisms in the coupled
fluid–disk system. The fluid film response was modeled using a modified Reynolds equation that includes
contribution of the fluid centrifugal inertia while the disk transverse vibration was modeled as a classical
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rotating plate under distributed film pressure. They concluded that the instabilities in the disk-film system are
of two types; a rotating damping instability is caused by the rotating film damping at rotating speeds above a
critical value that is less than the flutter speed and a combination instability is caused by the combined effect of
film stiffness and damping at rotation speeds above a threshold that is greater than the flutter speed. Also, they
showed that the maximum rotation speed of stable disk vibration is bounded above by the lowest onset speed
of rotating damping instability. Their analysis showed that the onset speed of the rotating damping instability,
for a certain circumferential mode number, exists when the disk speed equals two times the undamped wave
speed of the mode in the pre-flutter region.

Naganthan et al. [7] performed a numerical study about the flutter instability of a flexible disk rotating close
to a rigid wall. In their study, the disk was modeled using linear plate theory while the flow in the air film was
modeled using the classical Reynolds equation of lubrication considering the radial flow. The results from
their study showed that the critical speed of a disk rotating close to a rigid wall is increased due to the
stiffening effect of the fluid rotating close to the disk. Also, they showed that the rotating disk undergoes
flutter instability, and possibly self-excited vibrations, in the presence of air when the speed of rotation is
above the critical speed for a given disturbance mode.

Recently, the stabilizer shape and the number of stabilizing pads have been considered [8–11]; in their
experimental and numerical studies, they used triangularly arranged stabilizer system and they concluded that
this system could effectively stabilize a flexible disk even under conditions with no active stabilizer adjustments
(such as axial position control and tilt control) which could not be eliminated at their previous single-stabilizer
system.

Kang and Raman [12,13] investigated the vibrations and instability of a rotating disk coupled to acoustic
oscillations of surrounding air, theoretically and experimentally. The coupled gyroscopic system equations
were formulated using a Kirchhoff plate model for the disk, and the wave equation for the compressible fluid.
The analytical study showed that the presence of bulk rotating fluid flow increases the flutter speed for mode
coalescence and splits all acoustic-dominated modes into forward and backward traveling waves. From the
acoustic pressure measurement, they found that the in-phase and out-of-phase acoustic modes exist in the
enclosure. Further, the acoustic modes split into forward and backward traveling waves as the disk rotates.
From the vibration measurement of the rotating disk, flutter instability of reflected traveling wave was
observed at supercritical speeds. Beyond the flutter speed, it was also observed that acoustic pressures oscillate
severely at the frequency of disk instability. Also, they claimed that the flutter instability observed in their
experiment is not the mode coalescence but a damping-induced instability leading to the flutter of a single
reflected traveling wave.

Because of the low Reynolds number of the fluid film, the earlier studies used the classical Reynolds
equation of lubrication to model the flow in the thin air film under the rotating disk. However, the convective
inertia forces as well as the coriollis force should be considered when studying the dynamics of disks rotating
at reasonably high speeds at which the Reynolds number becomes considerably large. Also, according to
Huang and Mote [6], the maximum rotation speed of stable disk vibration is bounded above by the lowest
onset speed of rotating damping instability. So, if we try to decrease the rotating damping instability, we can
run the flexible disk at high rotation speeds. Practically, it is impossible to remove the rotating damping effect
completely, but we can reduce the mean velocity of the rotating damping forces as will be explained in this
paper.

The idea of a rotating wall is introduced to decrease the speed of the rotating damping relative to the disk
and/or to withstand the propagation of the undamped backward traveling wave through the fluid film by
increasing its stiffness and damping capability.

To the best of the authors’ knowledge, no attempt was made to study the stability of a flexible disk rotating
close to a rigid rotating wall. Also, no attempt was made to consider the effects of inertia and coriollis forces
on the dynamics of the disk–fluid system. This may be attributed to the fact that the classical Reynolds
equation of lubrication, used in previous works, cannot model these conditions accurately especially when we
consider a flexible disk rotating close to a rigid rotating wall.

The present work treats a flexible disk coupled to thin air film and rotating close to a rigid rotating wall.
Two new types of flat stabilizers, co-rotating and counter-rotating flat stabilizers, are introduced besides the
well-known fixed-plate stabilizer which has been studied extensively. The disk is modeled using linear plate
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theory and the air flow between the flexible disk and the rigid wall is modeled using Navier–Stokes and
continuity equations. The flow equations are discretized using cell center finite volume method (FVM) and
solved numerically with the SIMPLE algorithm. The discretized momentum and continuity equations are
solved using ADI method. The spatial terms in the disk model are discretized using finite difference method
(FDM) and time integration is performed using fourth-order Runge–Kutta method. The effect of inertia and
coriollis forces on the disk displacement and air-film pressure is studied, also the dependence of these forces on
the rotation speed, initial gap size and inlet-hole radius is investigated. The developed transient numerical code
is used to compare the stability boundaries of the different types of flat stabilizer at a wide range of
circumferential mode numbers.
2. Mathematical model

2.1. Flow equations

The model shown in Fig. 1 represents an annular circular disk clamped at its inner radius (rc), free at its
outer radius (ro) and rotating with constant angular velocity o above a rigid rotating wall at a distance (ho).
The governing equations for the flow between the rotating flexible disk and the rigid wall are the momentum
and continuity equations in cylindrical coordinates (r, y, z) [14]. The flow in the thin air film is assumed to be
steady laminar flow and the fluid is incompressible with constant viscosity. Since the gap height is very small
compared with the disk radius, the viscous terms in the order of (ho/ro)

2 are neglected. The following
dimensionless quantities are used to express the flow equations in dimensionless form

rn ¼
r

ro

; zn ¼
z

ho

; vnr ¼
vr

vo
r

; vny ¼
vy

vo
y
; vnz ¼

vz

vo
z

; pn ¼
p

pa

; mn ¼
m
mair

; rn ¼
r
rair

where vr, vy and vz are the flow velocities along radial, azimuthal and axial coordinates, respectively; vr
o, vy

o

and vz
oare reference values for the velocity components. Also, p, m and r are the fluid pressure, fluid viscosity,

and fluid density, respectively, while pa, mair and rair represent the ambient pressure, air viscosity and air
density, respectively.

Owing to the vibrations of the flexible disk while rotating close to the rigid wall, the upper boundary of the
calculation domain is deformed; hence, a grid mapping to a corresponding computational domain with
uniform staggered grids is needed every iteration cycle. In the present study, the physical coordinates (r, y and
z) are mapped into (Z, z and x) coordinates, respectively, in the computational domain. Using the previous
assumptions, and after dropping the asterisks, the dimensionless flow equations in the new computational
domain considering the convective inertia forces, the fluid coriollis force, the fluid centrifugal force, the fluid
viscous forces and the fluid pressure forces, are expressed as

Z-momentum equation:

Rer
1

Z
qrZvrvr

qZ
þ Rey

1

Z
qrvyvr

qz
þ RezJ

qrvzvr

qx
� Rey

vo
y

vo
r

� �
rv2y
Z
� RerJzZ

qrvrvr

qx

� ReyJzz
1

Z
qrvyvr

qx
¼ �

pah2
o

mvo
r ro

� �
qp

qZ
� JzZ

qp

qx

� �
þ mJ2 q

2vr

qx2
Fig. 1. Analytical model of the disk–fluid system.
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z-momentum equation:

Rer

1

Z
qrZvrvy

qZ
þ Rey

1

Z
qrvyvy

qz
þ RezJ

qrvzvy

qx
þ Rer

rvrvy

Z
� RerJzZ

qrvrvy

qx

� ReyJzz
1

Z
qrvyvy

qx
¼ �

pah2
o

mvo
yro

� �
1

Z
qp

qB
� JzB

qp

qx

� �
mJ2 q

2vy

qx2

x-momentum equation:

Rer

1

Z
qrZvrvz

qZ
þ Rey

1

Z
qrvyvz

qz
þ RezJ

qrvzvz

qx
� RerJzZ

qrvrvy

qx

� ReyJzz
1

Z
qrvyvz

qx
¼ �

paho

mvo
z

� �
J
qp

qx
þ mJ2 q

2vz

qx2

Continuity equation:

Rer

1

Z
qrZvr

qZ
þ Rey

1

Z
qvy

qz
þ RezJ

qvz

qx
� RerJzZ

qrvr

qx
� ReyJzz

1

Z
qrvy

qx
¼ 0 (1)

where Rer, Rey and Rez are the modified Reynolds numbers along the coordinate directions and J represents
the Jacobian of transformation.

The transformation derivatives zZ ¼
qz
qZ ; zz ¼

qz
qz ; zx ¼

qz
qx

� �
are calculated numerically using second order

central difference approximation for interior grid points and second order forward or backward difference for
boundary nodes. An algebraic grid generation technique [15] is used to build up a uniform grid after grid
distortion due to disk deformation every iteration cycle.

The dimensionless flow equations when the inertia and the coriollis forces are neglected (inertialess model)
can be expressed as

Z�momentum equation:

� Rey
vo
y

vo
r

� �
rv2y
Z
¼ �

pah2
o

mvo
r ro

� �
qp

qZ
� JzZ

qp

qx

� �
þ mJ2 q

2vr

qx2

z�momentum equation:

Rer

rvrvy

Z
¼ �

pah2
o

mvo
yro

� �
1

Z
qp

qz
� Jzz

qp

qx

� �
mJ2 q

2vy

qx2

x�momentum equation:

0 ¼ �
paho

mvo
z

� �
J
qp

qx
þ mJ2 q

2vz

qx2

Continuity equation:

Rer

1

Z
qrZvr

qZ
þ Rey

1

Z
qvy

qz
þ RezJ

qvz

qx
� RerJzZ

qrvr

qx
� ReyJzz

1

Z
qrvy

qx
¼ 0 (2)

The transformed equations are solved with the following boundary conditions:
�
 At rigid wall: z ¼ 0 and rhorpro, (rh is the inlet-hole radius)

vr ¼ vz ¼ 0; vy ¼ 0 ðfixed wallÞ; vy ¼ or ðco-rotating wallÞ

vy ¼ �or ðcounter-rotating wallÞ
�
 At rotating disk: z ¼ ho and rcprpro

vr ¼ vz ¼ 0; vy ¼ orðno-slip conditionÞ
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At rotating shaft: r ¼ rc and 0pzpho
�
vr ¼ vz ¼ 0; vy ¼ orc
�
 At inlet hole: z ¼ 0 and rcprprh

qvz

qz
¼ �

1

r

qrvr

qr
þ

1

r

qvy

qy

� �
ðmass conservationÞ; p ¼ pa
�
 At outlet: r ¼ ro and 0pzpho

1

r

qrvr

qr
¼ �

1

r

qvy

qy
þ

qvz

qz

� �
ðmass conservationÞ

qvy

qr
¼

qvz

qr
¼ 0 ðzero gradientÞ,

p ¼ pa
�
 Periodic boundary conditions were used in the circumferential direction as follows:

vrðr; yÞ ¼ vrðr; yþ 2pÞ vzðr; yÞ ¼ vzðr; yþ 2pÞ

vyðr; yÞ ¼ vyðr; yþ 2pÞ pðr; yÞ ¼ pðr; yþ 2pÞ
2.2. Disk equation

Consider the schematic of the flexible disk system shown in Fig. 1. An annular disk of uniform thickness (h)
is clamped at radius (rc) and is free at outer radius (ro) while rotating with constant angular velocity o. The
disk is thin (h5ro) and the disk material is isotropic with Young’s modulus (E), Poisson’s ratio (u) and density
(rd). The disk material is assumed to be linearly elastic so that Hook’s law holds. Also, it is assumed that the
in-plane displacements are negligibly small compared with the transverse deflections. As the disk is assumed to
be very thin, the transverse deflection is assumed to be constant across the disk thickness. Two coordinate
systems are used in the present analysis; the first is rotating with the disk (r, y, z), while the second coordinate
system, used in the fluid equations, is fixed in the space (Z, z, x). The relation between the two coordinate
systems is (z ¼ y+ot). Thus, the linear elastic equation describing the small transverse displacement (w) of the
thin spinning disk is given by

1

r

q
qr

rsr

qw

qr

� �
þ

1

r

q
qy

sy
1

r

qw

qy

� �
�

D

h
r4wþ

p

h
¼ rd

q2w
qt2

(3)

where sr and sy are the steady-state stresses in the disk due to the centrifugal action of rotation and are
expressed as

sr ¼
rdo

2

8
ð1� uÞðr2c þ r2oGÞ � ð3þ uÞr2 þ ð1� uÞG

r2cr2o
r2

� 	

sy ¼
rdo

2

8
ð1� uÞðr2c þ r2oGÞ � ð1þ 3uÞr2 � ð1� uÞG

r2cr2o
r2

� 	
and

G ¼
�ð1þ uÞr2c þ ð3þ uÞr2o
ð1� uÞr2c þ ð1þ uÞr2o

(4)

In the disk model, (D) represents the bending stiffness of the disk and (p) is the fluid pressure. The boundary
conditions for the disk model are; vanishing disk displacement and disk slope at the clamp and vanishing
bending moment and shear force at the outer radius. Also, periodic boundary condition is used, in the
circumferential direction, for the disk displacement and disk axial velocity. The same disk model was assumed
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by Hosaka and Crandall [3] and Naganathan et al. [7]. In the present analysis, the disk equation was expressed
in dimensionless form using appropriate parameters.
3. Numerical method

3.1. Fluid equations

The fluid equations are discretized using cell-centered FVM on a uniform staggered grid. The pressure
values are stored at the cell centers while the velocity values are stored at the cell boundaries. The radial,
azimuthal and axial momentum equations are integrated over vr, vy and vz cells, respectively, while the
continuity equation is integrated over p cell. Gauss’s divergence theorem is used to transform the volume
integral over the cell into a surface integral over the cell boundary. The velocities at cell boundaries are
approximated using the UPWIND differencing scheme. Because of the staggered grid pattern, six grid
notations (I, i, J, j, K, k) are used to describe the velocity and pressure locations. The upper case letters are
used for indexing the pressure nodes while lower and upper case letters are used for indexing the velocity
components. The discretized flow equations are solved with the semi-implicit method for pressure linked
equations (SIMPLE) algorithm, Patankar [16], using the ADI method with TDMA. It is well known that the
pressure correction equation is susceptible to divergence unless some under-relaxation is used. For this reason,
under-relaxation factors are used for the air velocity components and air-film pressure.
3.2. Disk equation

The spatial terms in the disk equation are discretized using second order FDM. The discretized equation can
be expressed as

q2w

qt2
¼ C1wi;j þ C2wi�1;jþ1 þ C3wi;jþ1 þ C4wiþ1;jþ1 þ C5wiþ1;j þ C6wiþ1;j�1 þ C7wi;j�1

þ C8wi�1;j�1 þ C9wi�1;j þ C10wi;jþ2 þ C11wiþ2;j þ C12wi;j�2

þ C13wi�2;j þ pressure term (5)

The coefficients C1�C13 aroused from the discretization process while the pressure term is the source term in
the disk equation. The temporal derivative in the disk equation is integrated using fourth-order Runge–Kutta
time marching scheme. Since the discretized disk equation is second order in time, it is reduced to a set of two
first-order equations expressed as

qvi;j

qt
¼ f 1ðt;wi;j ; vi;jÞ;

qwi;j

qt
¼ f 2ðt;wi;j ; vi;jÞ (6)

where vi, j represents the velocity at the nodal point (i, j). The evolution of the coupled fluid–disk system is
simulated according to the flow chart shown in Fig. 2. In the problem simulation, two convergence criteria are
used (convergence criteria 1 and 2, shown in the flow chart). The first one is for the continuity residual which is
chosen to be less than 0.0001 for convergence. The second is for the pressure change under the rotating disk
and is chosen to be less than some specified value (effi10�6) where the condition for convergence is

PNI
i¼1

PNJ
j¼1ðp

new
i;j � pold

i;j ÞPNI
i¼1

PNJ
j¼1ðp

new
i;j Þ

p� (7)

In this numerical simulation, the pressure obtained from the iterative solution of the flow equations is used
to calculate the disk displacement at the next time step. Then, the boundary conditions for the flow equations
are updated and a numerical grid generation technique is used with the SIMPLE algorithm to calculate the
new pressure field to be used for the next iteration cycle in disk equation. The process is repeated until the disk
reaches a steady-state deflection determined by convergence criterion 2.
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Fig. 2. Flow chart of the present numerical simulations.

Table 1

Specifications of the polycarbonate flexible disk

Outside radius (r0)

(mm)

Clamping radius (rc)

(mm)

Thickness (h)

(mm)

Density (rd)

(kgm�3)

Elasticity modulus (E)

(GPa)

Poisson’s ratio

(n)

60 12.5 0.095 1200 2.5 0.23

A.M.M. Gad, Y.C. Rhim / Journal of Sound and Vibration 317 (2008) 473–489480
4. Numerical results

Through out the present investigations, a polycarbonate flexible disk with the specifications given in Table 1
is used. Also, the properties of air in the gap between the disk and the rigid wall are rair ¼ 1.23 kgm�3,
mair ¼ 17.9� 10�6 Pa s and pa ¼ 105Nm�2. Due to the geometry of the problem and the constraints imposed
on the dimensions of the fluid control volume, a fine-grid mesh has to be used to avoid the divergence of the
SIMPLE algorithm. In the present analysis, the number of grid points in the radial direction is chosen to be
160 so as not to affect the pressure in the air film at high rotation speeds. In the axial direction, the number of
grid points is 6 while the number of grid points in the circumferential direction depends on the mode number.
In the following results, eight grid points are used to catch one wavelength of the harmonic mode. Due to this
fine-grid mesh, the time step for the present analysis is in the order of 0.1 ms. However, the nonlinearity of the
introduced equations and the small time step increases the computation time considerably.

The present numerical investigations are carried out through three stages. For the first stage, the effects of
fluid inertia forces as well as the fluid coriollis force on the disk displacement and air-film pressure are
investigated through a comparison between the results obtained from the complete mathematical model (given
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by Eq. (1)) and that obtained from the inertialess model (given by Eq. (2)). In the second stage, the steady-state
behavior of the disk using the inertia model, given by Eq. (1), is determined and the effects of the rotation
speed, the inlet-hole radius and the initial gap size on the steady-state disk deflection, steady-state film
pressure, steady-state inlet axial-velocity and steady-state outlet radial-velocity are investigated. In the third
stage, the steady-state disk displacement and the steady-state air-film pressure are used as initial conditions for
the transient numerical simulations, and then the later is used to determine a bound for the critical speed at a
wide range of circumferential mode numbers for the different types of stabilizer.

4.1. Fluid inertia effects

In the steady-state analysis, the spatial terms in the disk equation are discretized using second-order FDM
and solved numerically using Gauss’s Point over-relaxation method. Fig. 3 shows a comparison between the
steady-state disk displacement as well as air-film pressure obtained with the mathematical model considering
fluid inertia (Eq. (1)) and those obtained with the inertialess model (Eq. (2)) at different disk rotation speeds. It
is important to mention that the stabilizer was assumed to be fixed for the results presented in this section. It is
noticeable from Fig. 3 that the difference between the two models increases as the disk rotation speed
increases. Thus, it can be concluded that the effect of the fluid inertia forces on the disk displacement becomes
more pronounced as the disk rotation speed increases. Also, Fig. 4 shows a comparison between the steady-
state disk displacement and air-film pressure obtained with inertia model and those obtained with the
inertialess model at different initial gap sizes. It is clear from Fig. 4 that the inertia forces affect the disk
displacement only when the initial gap size is comparatively large. Also, a comparison between the steady-
state disk displacement and air-film pressure obtained with inertia model and those obtained with the
inertialess model at different inlet-hole radii is shown in Fig. 5. It can be noticed from Fig. 5 that the inertia
forces are almost independent of the inlet-hole radius (rh) as the difference between the two models is
approximately the same at the different inlet-hole radii. Thus, it can be concluded from Figs. 3 to 5 that the
fluid inertia forces and fluid coriollis force become more effective and should be considered in future
simulations whenever the flexible disk spins with high rotation speeds over a rigid stabilizer where the gap in-
between is comparatively large.

4.2. Steady-state analysis

For the above reasons, the results presented in following sections are obtained with the mathematical model
given by Eq. (1) considering fluid inertia and coriollis forces in order to accurately simulate the dynamics of
the fluid–disk system.

It is well known that the disk rotation generates a centrifugal force on the gas molecules that acts to drive
the molecules outwards. So, a negative pressure is generated in the gas film to balance the centrifugal force.
This negative pressure pulls the disk downwards until the negative pressure force (FP) is balanced by the
Fig. 3. Rotation speed effect (ho ¼ 200mm, rh ¼ 18.77mm): (a) Steady-state disk displacement. (b) Steady-state air film pressure.

5400 revmin�1 5400 revmin�1 (inertialess) — 7200 revmin�1 - - - - 7200 revmin�1 (inertialess) — 10,000 revmin�1 - - -

10,000 revmin�1 (inertialess) 12,000 revmin�1 12,000 revmin�1 (inertialess).
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Fig. 4. Initial gap-size effect, (o ¼ 10,000 revmin�1, rh ¼ 18.77mm): (a) Steady-state disk displacement. (b) Steady-state air film pressure.

0.1mm 0.1mm (inertialess) — 0.15mm - - - - 0.15mm (inertialess) — 0.2mm - - - 0.2mm (inertialess) 0.25mm

0.25mm (inertialess).

Fig. 5. Inlet-hole radius effect, (o ¼ 10,000 revmin�1, ho ¼ 200mm): (a) Steady-state disk displacement. (b) Steady-state air film pressure.

13.10mm 13.10mm (inertialess) — 16.68mm - - - - 16.68mm (inertialess) — 20.27mm - - - 20.27mm (inertialess)

23.85mm 23.85mm (inertialess).
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centrifugal forces acting on the disk material (FC), the membrane forces associated with stresses in the disk
(FS) and the disk resistance to bending (FB). When these forces are in balance, the disk reaches an
axisymmetric steady-state displacement (hat shape [1]).

The effect of increasing rotation speed on the steady-state disk deflection, air-film pressure and inlet axial
velocity for the three types of stabilizer is shown in Fig. 6. The figure shows that the negative pressure in the air
film increases as the disk rotation speed increases while the disk deflection does not affected much. This is
because the increase in the negative pressure force (FP) is accompanied by a corresponding increase in the
resisting disk-material forces (FC and FS); thus the disk displacement is not affected much. Also, it can be read
from the figure that increasing rotation speed increases the outlet mass flow rate which is compensated by a
corresponding increase in the inlet flow rate as shown from the increase in the inlet axial velocity. Also, it is
noticeable from Fig. 6 that the flexible disk rotating close to a counter-rotating stabilizer has the smallest
deflection relative to the other two types. The inlet-hole radius effect on the steady-state disk deflection and
steady-state outlet radial velocity, for the three types of stabilizer, is shown in Fig. 7. The dimensionless gap
shown in Fig. 7 represents the axial distance normalized with the tip point displacement. It can be noticed
from Fig. 7 that the decrease of the inlet-hole radius is accompanied by the increase of the flexible disk
deflection. The reason for that is the increase of the film negative pressure due to the continuous outward flow
without a sufficient compensation from the inlet hole. The effect of initial gap height ho on the disk deflection
is shown in Fig. 8. Increasing the gap height reduces the shear resistance to the outward flow, thus increases
the outward flow rate and consequently increases the film negative pressure causing the disk to deflect more
towards the stabilizer.

The most important result from the steady-state analysis is that the flexible disk rotating close to a counter-
rotating flat stabilizer has the smallest deflection relative to the other two types of stabilizer. The reason for
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Fig. 6. Disk deflection, pressure distribution and inlet axial velocity (vz) variations in radial direction (ho ¼ 200mm, rh ¼ 18.77mm): (a)

o ¼ 5400 revmin�1. (b) o ¼ 12,000 revmin�1. — Counter rotating stabilizer - - - - Fixed stabilizer . . . . . . . . . . Co-rotating stabilizer.
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that is the smallest outward flow and consequently, the smallest negative pressure generated in the air film.
This result can be explained as follows: Introducing the counter rotating stabilizer reduces the effect of the
centrifugal force acting on the air molecules by creating a high shear plane, in the gap between the rotating
disk and the counter rotating stabilizer, which in turn increases the resistance for the outward flow.

4.3. Transient numerical simulation

The objective of developed transient numerical code is to trace a bound for the velocity at which the onset of
rotating damping instability occurs for the three types of flat stabilizers. This is achieved by increasing the disk
rotation speed at a constant circumferential mode number and checking the stability of the steady-state
disk–fluid system.

According to Yasuda et al. [5], any disturbance on a rotating disk propagates as a combination of forward
and backward traveling waves. Also they showed that the forward traveling wave always decays while the
behavior of the backward traveling wave depends on its frequency as well as the damping and lifting
components of the air film, CD and CL, respectively. At speeds of rotation lower than the critical speed, the
real part of all eigenvalues are negative and thus, the forward and backward traveling waves decay
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Fig. 7. Disk deflection and outlet radial velocity (vr) at two different inlet-hole radii (rh). (o ¼ 10,000 revmin�1, ho ¼ 200mm): (a)

rh ¼ 13.1mm. (b) rh ¼ 23.85mm. — Counter rotating stabilizer - - - - Fixed stabilizer . . . . . . . . . . Co-rotating stabilizer.

Fig. 8. Disk deflection at two different gap sizes (ho), o ¼ 10,000 revmin�1, rh ¼ 18.77mm: (a) ho ¼ 100mm. (b) ho ¼ 250mm — Counter

rotating stabilizer - - - - Fixed stabilizer . . . . . . . . . . Co-rotating stabilizer.
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exponentially with time and the disk reaches an equilibrium steady state which is mostly the axisymmetric
steady-state solution. At the critical speed, the real part of one eigenvalue is zero while all the other eigenvalues
have negative real parts. Thus, the corresponding wavenumber of the backward traveling wave does not grow
or decay in time for the linear model. However, for the forward traveling wave, the real part of the eigenvalue
is still negative, thus the forward traveling waves die down with time. When the speed of rotation of the disk is
above the critical speed for a given wavenumber, the real part of the corresponding eigenvalue for the
backward traveling wave is positive. The forward traveling waves decay in amplitude with time, while the
supercritical backward traveling wave increases in amplitude with time. Thus, it is the supercritical backward
traveling wave that leads to self-excited oscillations in the fluid–disk system.

In the following results, the steady-state disk displacement is perturbed by a small non-axisymmetric
component and given as initial condition for the transient analysis while the pressure initial condition is
assumed to be the steady-state pressure field. Also the initial value for the axial velocity of the disk is assumed
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to be zero. The initial conditions for the transient analysis are as follows:

wðr; y; t ¼ 0Þ ¼ woðrÞð1þ � sin myÞ

pðr; y; t ¼ 0Þ ¼ poðrÞ

vðr; y; t ¼ 0Þ ¼ 0 (8)

where m represents the mode number. Also, wo and po represent the steady-state disk displacement and steady-
state film pressure, respectively. It is important to mention that the value of the perturbation parameter (e) is
set to 0.01. Several cases have been studied in order to determine a bound for the critical speed at the
considered mode number. At a given mode number, the rotation speed is increased with an increment of
500 revmin�1 and the evolution of the fluid–disk system with time is investigated.

The variation of the disk displacement with time at a point and the disk deflection shape before divergence
when the disk rotates close to a counter rotating stabilizer and the mode number of the initial disturbance is 10
is shown in Fig. 9. It is clear from Fig. 9(a) that the initial disturbance dies out and eventually the disk
converges to the steady-state displacement when the disk rotates at 15,500 revmin�1 while Fig. 9(b) shows that
the initial disturbance builds-up and the same disk experiences self-excited vibrations when it rotates at
16,000 revmin�1. Also, this result is in a good agreement with the results obtained by Hosaka and Crandall [3]
that the disk displacements are only large near the outer edge. The results from Fig. 9 suggest that the critical
speed of rotating damping instability when the disk rotates close to a counter rotating stabilizer is somewhere
between 15,500 and 16,000 revmin�1 if the mode number of the initial disturbance is 10.

Fig. 10 shows the variation of the disk displacement with time at a point and the disk deflection shape before
divergence when the disk rotates close to a fixed stabilizer and the mode number of the initial disturbance is
10. It can be deduced from the figure that the critical speed when the disk rotates close to a fixed stabilizer is
somewhere between 12,000 and 12,500 revmin�1.

Fig. 11 suggests that the critical speed of rotating damping instability when the disk rotates close to a co-
rotating stabilizer is somewhere between 6300 and 6500 revmin�1. Thus, the results from the transient
numerical simulations, when the mode number is 10, show that the highest critical speed can be obtained when
the flexible disk rotates close to a counter rotating stabilizer.

According to [3,5], these results can be interpreted as follows; when using co-rotating stabilizer, the mean
flow velocity is same as the disk speed, so that the rotating damping energizes all mode numbers of the
undamped wave, because their speed certainly is lower than the disk speed. For the fixed stabilizer, the
rotating damping speed is the mean velocity of the circumferential flow which is a half of the disk speed and
hence, the rotating damping instability occurs only when the speed of the backward traveling wave is less than
half the disk speed. However, the results showed that the behavior of the flexible disk when rotating close to a
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Fig. 10. System evolution with fixed stabilizer, (m ¼ 10, ho ¼ 200mm, rh ¼ 17.88mm): (a) Point displacement with time

(o ¼ 12,000 revmin�1/r ¼ 42mm, y ¼ 281). (b) Disk displacement before divergence (o ¼ 12,500 revmin�1/t ¼ 0.000373 s).
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Fig. 11. System evolution with co-rotating stabilizer (m ¼ 10, ho ¼ 200mm, rh ¼ 17.88mm): (a) Point displacement with time

(o ¼ 6300 revmin�1/r ¼ 42mm, y ¼ 281). (b) Disk displacement before divergence (o ¼ 6500 revmin�1/t ¼ 0.0013 s).
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counter-rotating stabilizer with initial gap of ho is analogous to that when rotating close to a fixed stabilizer
with initial gap of 0.5ho.

From the fluid dynamics point of view; using a counter rotating stabilizer divides the air film in the gap
between the disk and the stabilizer into two zones, each one rotates with the adjacent wall, with a high shear
plane in-between. This fluid–structure system increases the damping capability of the air film and resists the
propagation of the initial disturbance in the air-film layers and thereby opposes the propagation of the
undamped wave allowing the disk to rotate stably at high rotation speeds. The results showed clearly that it is
possible to have a stable disk at high rotation speeds and with two-times larger initial-gap when using counter-
rotating stabilizer instead of the fixed flat stabilizer.

Fig. 12 shows the pressure variation with time at a point under the disk and the pressure field under the disk
before divergence when the flexible disk rotates close to a fixed stabilizer and the mode number of the initial
disturbance is 20. The figure shows that the air-film damps out the initial disturbance when the rotation speed
is 11,500 revmin�1 while it excites the backward traveling wave when the disk rotates at 12,000 revmin�1.
With a similar manner, the air film behaves when the disk rotates close to a counter rotating stabilizer at
14,500 and 15,000 revmin�1, respectively, as shown in Fig. 13. The most noticeable result from Figs. 12 and 13
is that the pressure field under the disk before divergence in both cases is very similar.

The velocity field in the air film at an angle (y ¼ 2.251), before disk divergence, when using fixed stabilizer
and counter rotating stabilizer is shown in Fig. 14. The figure shows clearly that the profile of the velocity field
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Fig. 12. Air film pressure when using fixed stabilizer (m ¼ 20, ho ¼ 200mm, rh ¼ 17.88mm): (a) Pressure variation with time
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near the rotating disk when using counter rotating stabilizer is very similar to that when using fixed stabilizer.
In other words, if the velocity field under the flexible disk rotating close to a counter rotating stabilizer
(Fig. 14b) was divide into two halves, the upper half will be very similar to the velocity profile when the flexible
disk rotating close to a fixed stabilizer (Fig. 14a). This result supports our suggestion that the behavior of the
flexible disk rotating close to a counter rotating stabilizer with initial gap of ho is analogous to that when
rotating close to a fixed stabilizer with a gap of 0.5ho.

In a similar manner, the transient numerical simulation is utilized to determine the bounds for the critical
speeds at a wide range of mode numbers, from 5 to 30, as shown in Fig. 15. For these bounds, the lower value
gives the disk rotation speed where the mode is stable and the upper value gives a speed for which the disk is
unstable.

Fig. 15 shows that the critical speed of rotating damping instability when the disk rotates close to a counter
rotating stabilizer is higher than that when rotating close to the other two types of stabilizer for all mode
numbers. Also, it is clear that the critical speed decreases when the mode number increases and the critical
speed decreases sluggishly when using co-rotating stabilizer.
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Fig. 14. Velocity field before divergence at (y ¼ 2.251): (a) With fixed stabilizer (m ¼ 20, o ¼ 12,000 revmin�1, ho ¼ 200mm,

rh ¼ 17.88mm) (b) With counter rotating stabilizer (m ¼ 20, o ¼ 15,000 revmin�1, ho ¼ 200mm, rh ¼ 17.88mm).

Fig. 15. Critical speed of rotating damping instability as a function of the mode number for the three types of stabilizer at (ho ¼ 200mm,

rh ¼ 17.88mm).
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5. Conclusions

The following conclusions can be drawn out from the present analysis:
�
 The fluid inertia forces and fluid coriollis force becomes more effective and should be considered in future
simulations whenever the flexible disk spins with high rotation speeds over a rigid stabilizer where the gap
in-between is comparatively large.

�
 Increasing disk rotation speed has a very small effect on the disk deflection compared with the effects of

increasing the initial gap height or increasing the inlet-hole radius.

�
 The flexible disk rotating close to a counter-rotating flat stabilizer has the smallest deflection relative to the

other two types of stabilizer.

�
 Using co-rotating stabilizer, the air film can excite all undamped traveling waves causing rotating damping

instability while using fixed stabilizer can excite these waves only at certain speeds.
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�
 The onset speed of rotating damping instability can be increased by introducing a counter-rotating flat
stabilizer instead of the well-known fixed stabilizer.

�
 The behavior of the flexible disk rotating close to a counter rotating stabilizer with an initial gap of ho is

analogous to that when rotating close to a fixed stabilizer with an initial gap of 0.5ho.
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